3.64 \(\int \frac {A+B x^3}{x^2 (a+b x^3)} \, dx\)

Optimal. Leaf size=147 \[ -\frac {(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3} b^{2/3}}+\frac {(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3} b^{2/3}}+\frac {(A b-a B) \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3} b^{2/3}}-\frac {A}{a x} \]

[Out]

-A/a/x+1/3*(A*b-B*a)*ln(a^(1/3)+b^(1/3)*x)/a^(4/3)/b^(2/3)-1/6*(A*b-B*a)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*
x^2)/a^(4/3)/b^(2/3)+1/3*(A*b-B*a)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)/a^(1/3)*3^(1/2))/a^(4/3)/b^(2/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {453, 292, 31, 634, 617, 204, 628} \[ -\frac {(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3} b^{2/3}}+\frac {(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3} b^{2/3}}+\frac {(A b-a B) \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3} b^{2/3}}-\frac {A}{a x} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^3)/(x^2*(a + b*x^3)),x]

[Out]

-(A/(a*x)) + ((A*b - a*B)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(4/3)*b^(2/3)) + ((A*b
 - a*B)*Log[a^(1/3) + b^(1/3)*x])/(3*a^(4/3)*b^(2/3)) - ((A*b - a*B)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)
*x^2])/(6*a^(4/3)*b^(2/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {A+B x^3}{x^2 \left (a+b x^3\right )} \, dx &=-\frac {A}{a x}-\frac {(A b-a B) \int \frac {x}{a+b x^3} \, dx}{a}\\ &=-\frac {A}{a x}+\frac {(A b-a B) \int \frac {1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a^{4/3} \sqrt [3]{b}}-\frac {(A b-a B) \int \frac {\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 a^{4/3} \sqrt [3]{b}}\\ &=-\frac {A}{a x}+\frac {(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3} b^{2/3}}-\frac {(A b-a B) \int \frac {-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 a^{4/3} b^{2/3}}-\frac {(A b-a B) \int \frac {1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{2 a \sqrt [3]{b}}\\ &=-\frac {A}{a x}+\frac {(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3} b^{2/3}}-\frac {(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3} b^{2/3}}-\frac {(A b-a B) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{a^{4/3} b^{2/3}}\\ &=-\frac {A}{a x}+\frac {(A b-a B) \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3} b^{2/3}}+\frac {(A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3} b^{2/3}}-\frac {(A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3} b^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 134, normalized size = 0.91 \[ \frac {-x (A b-a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )-6 \sqrt [3]{a} A b^{2/3}+2 x (A b-a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )+2 \sqrt {3} x (A b-a B) \tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{6 a^{4/3} b^{2/3} x} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^3)/(x^2*(a + b*x^3)),x]

[Out]

(-6*a^(1/3)*A*b^(2/3) + 2*Sqrt[3]*(A*b - a*B)*x*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] + 2*(A*b - a*B)*x*
Log[a^(1/3) + b^(1/3)*x] - (A*b - a*B)*x*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(4/3)*b^(2/3)*x)

________________________________________________________________________________________

fricas [A]  time = 0.98, size = 372, normalized size = 2.53 \[ \left [-\frac {6 \, A a b^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (B a^{2} b - A a b^{2}\right )} x \sqrt {-\frac {\left (a b^{2}\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b^{2} x^{3} - a b - 3 \, \sqrt {\frac {1}{3}} {\left (a b x + 2 \, \left (a b^{2}\right )^{\frac {2}{3}} x^{2} - \left (a b^{2}\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a b^{2}\right )^{\frac {1}{3}}}{a}} - 3 \, \left (a b^{2}\right )^{\frac {2}{3}} x}{b x^{3} + a}\right ) - \left (a b^{2}\right )^{\frac {2}{3}} {\left (B a - A b\right )} x \log \left (b^{2} x^{2} - \left (a b^{2}\right )^{\frac {1}{3}} b x + \left (a b^{2}\right )^{\frac {2}{3}}\right ) + 2 \, \left (a b^{2}\right )^{\frac {2}{3}} {\left (B a - A b\right )} x \log \left (b x + \left (a b^{2}\right )^{\frac {1}{3}}\right )}{6 \, a^{2} b^{2} x}, -\frac {6 \, A a b^{2} + 6 \, \sqrt {\frac {1}{3}} {\left (B a^{2} b - A a b^{2}\right )} x \sqrt {\frac {\left (a b^{2}\right )^{\frac {1}{3}}}{a}} \arctan \left (-\frac {\sqrt {\frac {1}{3}} {\left (2 \, b x - \left (a b^{2}\right )^{\frac {1}{3}}\right )} \sqrt {\frac {\left (a b^{2}\right )^{\frac {1}{3}}}{a}}}{b}\right ) - \left (a b^{2}\right )^{\frac {2}{3}} {\left (B a - A b\right )} x \log \left (b^{2} x^{2} - \left (a b^{2}\right )^{\frac {1}{3}} b x + \left (a b^{2}\right )^{\frac {2}{3}}\right ) + 2 \, \left (a b^{2}\right )^{\frac {2}{3}} {\left (B a - A b\right )} x \log \left (b x + \left (a b^{2}\right )^{\frac {1}{3}}\right )}{6 \, a^{2} b^{2} x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x^2/(b*x^3+a),x, algorithm="fricas")

[Out]

[-1/6*(6*A*a*b^2 + 3*sqrt(1/3)*(B*a^2*b - A*a*b^2)*x*sqrt(-(a*b^2)^(1/3)/a)*log((2*b^2*x^3 - a*b - 3*sqrt(1/3)
*(a*b*x + 2*(a*b^2)^(2/3)*x^2 - (a*b^2)^(1/3)*a)*sqrt(-(a*b^2)^(1/3)/a) - 3*(a*b^2)^(2/3)*x)/(b*x^3 + a)) - (a
*b^2)^(2/3)*(B*a - A*b)*x*log(b^2*x^2 - (a*b^2)^(1/3)*b*x + (a*b^2)^(2/3)) + 2*(a*b^2)^(2/3)*(B*a - A*b)*x*log
(b*x + (a*b^2)^(1/3)))/(a^2*b^2*x), -1/6*(6*A*a*b^2 + 6*sqrt(1/3)*(B*a^2*b - A*a*b^2)*x*sqrt((a*b^2)^(1/3)/a)*
arctan(-sqrt(1/3)*(2*b*x - (a*b^2)^(1/3))*sqrt((a*b^2)^(1/3)/a)/b) - (a*b^2)^(2/3)*(B*a - A*b)*x*log(b^2*x^2 -
 (a*b^2)^(1/3)*b*x + (a*b^2)^(2/3)) + 2*(a*b^2)^(2/3)*(B*a - A*b)*x*log(b*x + (a*b^2)^(1/3)))/(a^2*b^2*x)]

________________________________________________________________________________________

giac [A]  time = 0.22, size = 155, normalized size = 1.05 \[ \frac {\sqrt {3} {\left (B a - A b\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, \left (-a b^{2}\right )^{\frac {1}{3}} a} - \frac {{\left (B a - A b\right )} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, \left (-a b^{2}\right )^{\frac {1}{3}} a} - \frac {{\left (B a \left (-\frac {a}{b}\right )^{\frac {1}{3}} - A b \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a^{2}} - \frac {A}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x^2/(b*x^3+a),x, algorithm="giac")

[Out]

1/3*sqrt(3)*(B*a - A*b)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/((-a*b^2)^(1/3)*a) - 1/6*(B*a -
A*b)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/((-a*b^2)^(1/3)*a) - 1/3*(B*a*(-a/b)^(1/3) - A*b*(-a/b)^(1/3))*(
-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/a^2 - A/(a*x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 195, normalized size = 1.33 \[ -\frac {\sqrt {3}\, A \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 \left (\frac {a}{b}\right )^{\frac {1}{3}} a}+\frac {A \ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \left (\frac {a}{b}\right )^{\frac {1}{3}} a}-\frac {A \ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \left (\frac {a}{b}\right )^{\frac {1}{3}} a}+\frac {\sqrt {3}\, B \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 \left (\frac {a}{b}\right )^{\frac {1}{3}} b}-\frac {B \ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \left (\frac {a}{b}\right )^{\frac {1}{3}} b}+\frac {B \ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \left (\frac {a}{b}\right )^{\frac {1}{3}} b}-\frac {A}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^3+A)/x^2/(b*x^3+a),x)

[Out]

1/3/a/(a/b)^(1/3)*ln(x+(a/b)^(1/3))*A-1/3/b/(a/b)^(1/3)*ln(x+(a/b)^(1/3))*B-1/6/a/(a/b)^(1/3)*ln(x^2-(a/b)^(1/
3)*x+(a/b)^(2/3))*A+1/6/b/(a/b)^(1/3)*ln(x^2-(a/b)^(1/3)*x+(a/b)^(2/3))*B-1/3/a*3^(1/2)/(a/b)^(1/3)*arctan(1/3
*3^(1/2)*(2/(a/b)^(1/3)*x-1))*A+1/3*3^(1/2)/b/(a/b)^(1/3)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x-1))*B-A/a/x

________________________________________________________________________________________

maxima [A]  time = 1.16, size = 140, normalized size = 0.95 \[ \frac {\sqrt {3} {\left (B a - A b\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a b \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {{\left (B a - A b\right )} \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, a b \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {{\left (B a - A b\right )} \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, a b \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {A}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x^2/(b*x^3+a),x, algorithm="maxima")

[Out]

1/3*sqrt(3)*(B*a - A*b)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(a*b*(a/b)^(1/3)) + 1/6*(B*a - A*b
)*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(a*b*(a/b)^(1/3)) - 1/3*(B*a - A*b)*log(x + (a/b)^(1/3))/(a*b*(a/b)^(
1/3)) - A/(a*x)

________________________________________________________________________________________

mupad [B]  time = 2.54, size = 126, normalized size = 0.86 \[ \frac {\ln \left (b^{1/3}\,x+a^{1/3}\right )\,\left (A\,b-B\,a\right )}{3\,a^{4/3}\,b^{2/3}}-\frac {A}{a\,x}+\frac {\ln \left (a^{1/3}-2\,b^{1/3}\,x+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (A\,b-B\,a\right )}{3\,a^{4/3}\,b^{2/3}}-\frac {\ln \left (2\,b^{1/3}\,x-a^{1/3}+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (A\,b-B\,a\right )}{3\,a^{4/3}\,b^{2/3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^3)/(x^2*(a + b*x^3)),x)

[Out]

(log(b^(1/3)*x + a^(1/3))*(A*b - B*a))/(3*a^(4/3)*b^(2/3)) - A/(a*x) + (log(3^(1/2)*a^(1/3)*1i - 2*b^(1/3)*x +
 a^(1/3))*((3^(1/2)*1i)/2 - 1/2)*(A*b - B*a))/(3*a^(4/3)*b^(2/3)) - (log(3^(1/2)*a^(1/3)*1i + 2*b^(1/3)*x - a^
(1/3))*((3^(1/2)*1i)/2 + 1/2)*(A*b - B*a))/(3*a^(4/3)*b^(2/3))

________________________________________________________________________________________

sympy [A]  time = 0.94, size = 90, normalized size = 0.61 \[ - \frac {A}{a x} + \operatorname {RootSum} {\left (27 t^{3} a^{4} b^{2} - A^{3} b^{3} + 3 A^{2} B a b^{2} - 3 A B^{2} a^{2} b + B^{3} a^{3}, \left (t \mapsto t \log {\left (\frac {9 t^{2} a^{3} b}{A^{2} b^{2} - 2 A B a b + B^{2} a^{2}} + x \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**3+A)/x**2/(b*x**3+a),x)

[Out]

-A/(a*x) + RootSum(27*_t**3*a**4*b**2 - A**3*b**3 + 3*A**2*B*a*b**2 - 3*A*B**2*a**2*b + B**3*a**3, Lambda(_t,
_t*log(9*_t**2*a**3*b/(A**2*b**2 - 2*A*B*a*b + B**2*a**2) + x)))

________________________________________________________________________________________